© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

Laidlaw Bus Field Trial of of FPC-1 Fuel Performance Catalyst

Test conducted for Laidlaw Bus by UHI Corporation-Provo, Utah and FPC Great Lakes Valders, Wisconsin

May 23, 1996

Table of Contents

	Abstract		ii				
I.	Introduction		1				
II.	Discussion of Carbo	n Mass Balance	1				
III.	Abstract Introduction Discussion of Carbon Mass Balance Instrumentation Technical Approach Discussion Conclusions Appendix 1 Computer Printouts of Data and Calculations Appendix 2 Raw Data Sheets Appendix 3 Table 1 - Diesel PFs Table 2 - Carbon Monoxide Emissions Table 3 - Smoke Emissions						
IV.	Technical Approach		3				
V.	Discussion		3				
VI.	Conclusions		6				
	Appendix 1	Computer Printouts of Data and Calculations					
	Appendix 2	Raw Data Sheets					
	Appendix 3	Table 1 - Diesel PFs Table 2 - Carbon Monoxide Emissions Table 3 - Smoke Emissions	ante:-				
	Appendix 4	Weather Data	199				
	Appendix 5	Figure 1. Carbon Balance Equations Figure 2. Sample Calculation					

i

1

Abstract

This paper discusses the results of a field test conducted by Laidlaw Bus, Green Bay, Wisconsin, under the direction of Mr. David Van Pay, Fleet Manager, to determine the economic and environmental benefits from fuel treatment with a unique combustion catalyst called FPC-1. The study conducted on a fleet of DT 466, 7.3 International, 6.2 GM, DTA 360 International, and 8.2 Detroit diesel powered buses documented the following:

(1) All test buses realized reductions in fuel consumption after FPC-1 fuel treatment. With anomalies removed, the fleet averaged a 10.89% reduction in fuel consumption.

(2) FPC-1 treated fuel combusted more completely than the standard diesel. Carbon monoxide emissions were reduced 27.10% on a fleet average basis.

(3) Smoke density was reduced 45.10% after FPC-1 fuel treatment.

These results verify substantial <u>fuel cost savings and environmental benefit</u> can be derived from FPC-1 use throughout the entire Laidlaw Bus fleet operation. The value of the improved emissions quality of the exhaust gases cannot be overstated for a transit bus operation. Remarkable, but typical reductions in carbon monoxide and smoke emissions, seen in this study, are basically provided by FPC-1 fuel treatment with no sacrifice in operation cost.

The paper also discusses a unique, recognized test method for determining the benefits of FPC-1 in the field. The method is known as the carbon mass balance, which is central to the EPA standardized Federal Test Procedures and Highway Fuel Economy Test. The method uses exhaust gas analysis under steady-state engine operation to determine both fuel consumption and exhaust emissions.

I. Introduction

FPC-1 Fuel Performance Catalyst is a burn rate modifier or catalyst, proven to reduce fuel consumption and increase engine horsepower in several recognized, independent laboratory tests, and dozens of independent field trials. The catalyst also has a remarkable impact upon the products of incomplete combustion that are regulated by emissions reduction legislation (smoke and carbon monoxide).

The intent of the trial by Laidlaw Bus was to determine the degree of fuel consumption, and emissions reduction resulting from the addition of the FPC-1 catalyst to the blended diesel fueling a select fleet of compression-ignition engine powered buses. The test methodology for determining fuel consumption is the carbon mass balance (cmb). The cmb method measures the carbon containing products of the combustion process (CO2, CO, HC) found in the exhaust, rather than directly measuring fuel flow into the engine. Also, while conducting the cmb procedure, a Bacharach Smoke Spot method is used to determine smoke density in the exhaust of the diesel powered equipment.

This report summarizes the results of baseline and FPC-1 treated fuel consumption and emissions data, and computes and compares the mass flow rates (engine performance factors or PFs) for the same.

II. Discussion of Carbon Mass Balance Method

The carbon mass balance eliminates virtually all of the variables associated with field testing for fuel consumption changes. The method requires no modifications to fuel lines or engines, and can be conducted in a short period of time at minimal expense.

Instead of measuring fuel flow into the engine (ie., the weight or volume of the fuel), measurements are made of the exhaust gases leaving the engine. More precisely, the carbon containing gases in the exhaust are measured. The method is based upon the Law of Conservation of Matter, which states that atoms can neither be created nor destroyed. Since the engines only source of carbon is the fuel it consumes, the carbon measured in the exhaust must come from the fuel. By measuring the carbon going out of the engine in the form of products of combustion, the amount of carbon entering the engine can be determined.

Carbon Balance Calculation

The carbon leaving the engine is mainly as carbon dioxide (CO2), carbon monoxide (CO), unburned hydrocarbons (HC), and particulate (smoke). By collecting this data while the engine is operating at a given load and speed, the fuel flow rate into the engine can be accurately determined. When engine load and speed, along with other factors influencing fuel consumption are reproduced and/or monitored to make appropriate corrections, the carbon balance can be used to confidently determine changes in fuel consumption that might result from the use of a fuel catalyst, such as FPC-1.

With the carbon balance, engine efficiency is expressed in terms of engine performance factors. To calculate any change in engine performance, separate measurements are made with the engine running on base fuel (untreated) and FPC-1 treated fuel. Any changes are stated as percentage changes from the baseline.

A copy of the carbon balance equations is found on Figure 1 (Appendix 5). A sample calculation for illustration purposes is also attached (see Figure 2, Appendix 5). Additionally, the carbon balance can be used to determine the effect of FPC-1 upon harmful emissions, such as carbon monoxide and smoke.

III. Instrumentation

Precision, state-of-the-art instrumentation is used to measure the concentrations of carbon containing gases in the exhaust stream and other factors related to fuel consumption and engine performance. The instruments and their purposes are listed below:

1) A Sun Electric SGA-9000 non-dispersive infrared (NDIR) four gas analyzer - measures the volume percent of CO2, CO, and oxygen (O2) in the exhaust, and the parts per million (ppm) of HC.

2) EPA I/M Calibration Gases - known gases used internally to calibrate the NDIR analyzer.

3) A twenty (20) foot sampling train and stainless steel exhaust gas probe - inserted into the engine exhaust pipe draws a sample of exhaust gases to the analyzer.

4) A Fluke Model 52 hand held digital thermometer and wet/dry thermocouple probe - measures exhaust, ambient, and fuel temperature.

5) A Dwyer Magnehelic 2000 Series Pressure Gauge and pitot tube - measures exhaust air velocity and/or pressure.

6) A Monarch Contact/Noncontact digital tachometer and magnetic tape - measures engine rpm when dash mounted tachometers are unavailable.

7) A hydrometer and flask - determines fuel specific gravity (density).

8) Barometric pressure is acquired from local airport or weather station.

9) A Bacharach Truespot Smokemeter - for smoke density determination.

Except for engine speed, fuel density, and ambient readings, all data are collected by simply inserting probes into the exhaust stream while the engine is running at a fixed rpm and load, and the vehicle is stationary. No modifications or device installations are made to the fuel system,

nor are normal equipment work cycles disrupted.

IV. Technical Approach

The following technical approach was observed during both test segments:

1) All instruments are calibrated according to accepted protocol.

2) A sample of fuel is drawn from the fuel tank on each piece of equipment. Using a hydrometer and wet/dry temperature probe, fuel specific gravity and temperature are recorded.

3) Each piece of equipment to be tested is parked, brakes locked, and run out-of-gear at a specific engine speed (RPM) until engine water, oil, and exhaust temperature, and exhaust pressure have stabilized. Engine speed is controlled using either a hand held phototach, or the tachometer in the cab, and either a Snap-On throttle lock, a high idle switch, or the programmable computer onboard the truck or bus.

4) Engine hours (or mileage) are taken from hour meters or odometers installed on the equipment.

5) After engine stabilization, the exhaust gas sampling probe is inserted into the exhaust stream. The Autocal button is depressed and after the LED readouts clear, test personnel take multiple readings of carbon dioxide, carbon monoxide, unburned hydrocarbons, and oxygen, along with engine speed, exhaust temperature and pressure. Smoke readings are taken on the diesel engines after exhaust gas testing.

6) Periodically, ambient air temperature, atmospheric pressure, and relative humidity are recorded. Temperature readings are taken at the test site. Other ambient readings are acquired from local weather information services.

7) All data are recorded until technicians are confident the information is consistent and reproducible.

8) After completing the baseline, the test fleet fuel was treated with FPC-1. All equipment operated as normal for approximately 400 to 500 hours, at which time the above procedure was reproduced without alteration, except FPC-1 fuel treatment in the test fleet.

V. Discussion

The data collected during the tests are summarized on the attached computer printouts (Appendix 1). From these data the volume fraction (VF) of each gas is determined and the average molecular weight (Mwt) of the exhaust gases computed. Next, the engine performance factor (pf) based upon the carbon mass in the exhaust is computed. The pf is finally corrected for intake air temperature and pressure (barometric), and total exhaust mass yielding a corrected

engine performance factor (PF). The PFs for the diesel engines are tabulated on Table 1 of Appendix 3. The carbon monoxide percentages on tabulated on Table 2 of Appendix 3. The smoke spot (smoke density) numbers for the diesel engines are found on Table 3 of Appendix 3.

Anomalies and Fleet Exclusions

All buses tested saw significant reductions in fuel consumption, and harmful emissions. Unit Number 584 experienced an abnormally large change in fuel consumption. This change is beyond the influence of the FPC-1 fuel catalyst alone, and therefore, other factors had to have contributed to the overall change. Without knowing the exact cause of the large improvement, it is impossible to make a correction, therefore, UHI feels the unit must be removed from consideration and not included in the conclusions for this study.

With this anomaly removed, the diesel fleet averaged a 10.89% reduction in fuel consumption after FPC-1 fuel treatment. Carbon monoxide and smoke, both regulated emissions, were reduced 27.1% and 45.1%, respectively, after removal of the anomaly. The results for each unit tested are tabled on Tables 1, 2, and 3 in Appendix 3.

The Effect of Environmental Conditions

Environmental conditions can have an impact upon engine performance and therefore, emissions reductions. For this reason, UHI technicians monitored ambient pressure and temperature, so correction factors can be applied to the calculation of exhaust gas flow rates.

VI. Conclusions

- (1) The addition of FPC-1 to the diesel fleet created a 10.89% reduction in fuel consumption.
- (2) Carbon monoxide emissions were reduced 27.1% on a fleet average basis.
- (3) Smoke density was reduced 45.1% after FPC-1 fuel treatment.

APPENDIX 1

.

;

PMT:

Company Name:	Laidlaw	Location	Green Bay, WI		Date:	3/27/96	
Test Portion:	Baseline	Stack Diam.	2	Inches			
Engine Type:	6.2 GM	Mile/Hrs	46412				
Equipment Type:	School Bus	ID #:	1249		Baro	30.54	
Fuel Sp. Gravity(SG	.865	Temp:			Time:	1:10PM	
800000000000000000000000000000000000000		800	~~	8000000-0-9000000			
RPM	Exh Temp	Py Inch	CO	HC	CO2	02	
1620	206.8	2.7	0.07	22	2.02	18.4	
1620	208.8	2.7	0.07	22	2.01	18.4	
1620	210.4	2.7	0.07	22	2.01	18.4	
1620	211.8	2.7	0.07	22	2.01	18.4	1
1620	212.6	2.7	0.07	22	2.01	18.4	
1620	213.4	2.7	0.07	22	2.01	18.4	
1620.000	210.743	2.700	.070	22.000	2.011	18.400	Mean
0	2.291	.000	.000	.000	.004	.000	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1	
2.20E-05	0.0007	.020	.184	29.059	309,452	1,297,999	
Company Name:	Laidlaw	Location:	Green Bay, WI	Inches	Test Date:	5/23/96	
Engine Type:	6.2 GM	Mile/Hrs:	48993	menes			
Equipment Type	School Bus	ID #:	1249		Baro:	29.94	
Fuel Sp. Gravity: SG Corr Factor:	.865	Temp:	55		Time:	11:25	
RPM	Exh Temp	Pydinch	CO	HC		02	
1620	208.2	2.7	0.04	16	1.9	18.5	
1620	207.4	2.7	0.04	15	1.9	18.4	
1620	207	2.1	0.04	15	1.9	18.4	
1620	200.0	2.7	0.04	15	1.69	10.4	
1620	200.4	2.7	0.04	15	1.07	18.4	
1020	200.4	2.1	0.04	15	1.09	10.4	
1620.000	207.033	2,700	.040	15,167	1,895	18,417	Mean
0	.686	.000	.000	.408	.005	.041	Std Dev
					_		
VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2	
1.52E-05	0.0004	.019	.184	29.041	333,238	1,380,141	
				r			
Performance factor ad	ljusted for fuel density:		1,380,141	**% Cl	nange PF	`=	6.33

Company Name:	Laidlaw	Location:	Green Bay WI		Date	3/27/96	
Test Portion:	Baseline	Stack Diam	4	Inches	Duit	5121170	
Testino Turco	7.2 Intern'l	Mile/Ilee	722(1	menes			
Engine Type:	School Bus	muernis	73301 596		n	20.52	
Equipment Type:	School Bus	1D #:	380		Baro	30.52	
Fuel Sp. Gravity(SG	.865	Temp:			Time:	11:50	
RPM	Exh Temp	Py Inch.	CO	HC	C(02	02	
1800	154.6	0.54	0.03	15	1.6	18.8	
1800	153.4	0.54	0.03	15	1.59	18.8	
1800	154.8	0.54	0.03	15	1.58	18.9	
1800	155.4	0.54	0.03	15	1.59	18.9	1
1800	155.8	0.54	0.03	15	1.59	18.9	
1800.000 0	<u> </u>	.540	.030	15.000 .000	1.590 .007	18.860	Mean Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1	
Company Name:	Laidlaw	Location:	Green Bay, WI		Test Date:		
Test Portion:	Treated	Stack Diam:	4	Inches			
Engine Type:	7.3 Intern'l	Mile/Hrs:	75067				
Equipment Type	School Bus	ID #:	586		Baro:	29.93	
Fuel Sp. Gravity:	.865	Temp:	53				
SG Corr Factor:	1.000				Time:	10:20	
RPM	Exh Temp	Py Inch	CO	HC	202	02	
1800	165.2	0.54	0.03	13	1.44	19	
1800	167.2	0.54	0.03	15	1 48	19	
1800	168.4	0.54	0.03	15	1.48	19	
1800	170.2	0.54	0.03	15	1.46	19	
1000	170.2	0.54	0.05		1.40		
1800.000	167.080 2.356	.540	.030	14.200	1.460	19.000	Mean Std Dev
		TIDOOC			1 .040		
VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2	
1.42E-05	0.0003	.015	.190	28.994	431,606	968,716	
Performance factor ad	insted for fuel density		968 716	**% ()	lange PF	=	8.66
i chormance factor ad	justed for fuel defisity:		500,710		unge I I		0.00

Company Name:	Laidlaw	Location:	Green Bay, WI		Date:	3/27/96	
Test Portion:	Baseline	Stack Diam.	4	Inches			
Engine Type:	7.3 Intn'l	Mile/Hrs	68040				
Equipment Type:	School Bus	ID #:	43		Baro	30.52	
Fuel Sp. Gravity(SG	.865	Temp:			Time:	12:10pm	
DDM	Evels Therese		<u> </u>				
1500	Extra remp		0.05	15	1.01	18.5	
1500	150.	7 0.8	0.05	13	1.91	18.4	
1500	158.	2 0.8	0.05	15	1.9	18.4	
1500	15	9 0.8	0.05	15	1.9	18.4	
1500	160.	6 0.8	0.05	15	1.9	18.4	
1500	160.	4 0.8	0.05	15	1.9	18.4	
						}	
1500.000	158.600	.800	.050	14.667	1.903	18.417	Mean
0	1.730	.000	.000	.816	.005	.041	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1	
~	T sidlaru		Crean Day, WJ		<i>T-4</i> D-4-	:	
company Name:	Laiulaw	LACUION.	Gleen Bay, wi	T 1	Iest Dute.		
Test Portion:	7 2 Into'l	Mile/IIm	4	inches			
Engine Type:	School Bus	ID #•	43		Ram.	29.93	
Equipment Type	960	Town:	54		Duro.	29.95	
SG Corr Factor:	1.006	remp.	54		Time:	10:30	
RPM	Exh Temp	Py Inch	CO	HC	CO2	02	
1500	166.4	0.8	0.04	15	1.72	18.7	
1500	166.	2 0.8	0.04	15	1.71	18.7	
1500	166.	2 0.8	0.04	15	1.72	18.7	
1500		6 0.8	0.04	15	1.72	18.7	
1500.000	166.200	.800	.040	15.000	1.718	18.700	Mean
0	.163	.000	.000	.000	.005	.000	Std Dev
VFHC	VECO	VECO2	VFO2	Mtw?	nf?	PF2	
1 50F-05	0.0004	017	187	29 024	366 515	675 379	
1.501-05	0.0004	.017			500,515	010,017	
Performance factor ad	ljusted for fuel density:		679,283	**% Cl	nange PF	'=	11.23

Company Name:	Laidlaw	Location	Green Bay, WI		Date:	3/27/96	
Test Portion:	Baseline	Stack Diam.	4	Inches			
Engine Type:	DT 466	Mile/Hrs	1815				
Equipment Type:	School Bus	ID #:	1299		Baro	30.52	
Fuel Sp. Gravity(SG	.865	Temp:			Time:	11:27am	
PPM	Exh Temn		CO	100012100	1000 A	<u></u>	
1800	198.6	0.8	0.06	17	1.74	18.7	1
1800	199.9	0.8	0.06	17	1.72	18.7	1
1800	208.4	0.8	0.06	16	1.71	18.7	1
1800	208.8	0.8	0.06	17	1.73	18.7	
1800.000	203.925	.800	.060	16.750	1.725	18.700	Mean Std Dev
VFHC	VFCO	VFCO2	 VFO2	sou		 PF1	Sta Dev
1.68E-05	0.0006	.017	.187	29.025	360,690	691,085	
Company Name:	Laidlaw	Location:	Green Bay, WI		Test Date:		
Test Portion:	Treated	Stack Diam:	4	Inches			
Engine Type:	DT 466	Mile/Hrs:	39725				
Equipment Type	School Bus	ID #:	1299		Baro:	29.93	
Fuel Sp. Gravity: SG Corr Factor:	.865 1.000	Temp:	53		Time:	10:30	
RPM	Exh Temp	Py linch	CO	HC	CO2	02	
1800	227	0.8	0.06	15	1.52	18.9	
1800	227.2	0.8	0.05	15	1.53	18.9	
1800	227.2	0.8	0.05	15	1.54	18.9	
1800	227.0	0.8	0.05	15	1.55	18.9	
1000	;	0.0	0.00		1.51		
			,				
1800.000	227.400	.800	.054	15.000	1.526	18.920	Mean
0	.400	.000	.005	.000	.011	.045	Std Dev
VEHC	VECO	VECO	VEO2	M47	"	DEA	
	V F C U		190	20.002	PIZ	796 025	
1.30E-03	0.00034	.015	.169	29.002	407,134	780,035	
Performance factor ad	justed for fuel density:		786,035	**% Cl	nange PF		13.74

Company Name:	Laidlaw	Location	Green Bay, WI		Date:	3/27/96
Test Portion:	Baseline	Stack Diam.	4	Inches		
Engine Type:	DT 466	Mile/Hrs	21683			
Equipment Type:	School Bus	ID #:	1358		Baro	30.52
Fuel Sp. Gravity(SG	.865	Temp:				
					Time:	11:40am

RPM	Exh Temp	Py Inch	CO	HC	CO2	02	
1700	206	0.7	0.09	17	1.64	18.7	
1700	208.4	0.7	0.09	15	1.62	18.7	
1700	211.4	0.7	0.08	17	1.6	18.6	
1700	211	0.7	0.08	15	1.53	18.9	
1700	211	0.7	0.08	17	1.53	18.9	
1700	211.8	0.7	0.07	17	1.52	18.9	
1700	211.8	0.7	0.07	17	1.52	19	
			and the second				
1700.000	210.200	.700	.080	16.429	1.566	18.814	Mean
0	2.188	.000	.008	.976	.052	.146	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1	
1.64E-05	0.0008	.016	.188	29.004	390,785	804,220	

Company Name:	Laidlaw	Location:	Green Bay, WI		Test Date:	5/23/96	
Test Portion:	Treated	Stack Diam:	4	Inches			
Engine Type:	DT 466	Mile/Hrs:	24944				
Equipment Type	School Bus	ID #:	1358		Baro:	29.93	
Fuel Sp. Gravity: SG Corr Factor:	.865 1.000	Temp:	53		Time:	10:10	

RPM	Exh Temp	Pv Inch	СО	HC	CO2	02	
1700	225.2	0.7	0.06	15	1.41	19	
1700	226.8	0.7	0.06	15	1.41	19	
1700	228.4	0.7	0.06	15	1.4	19	
1700	229.4	0.7	0.06	15	1.4	19	
	3						
1700.000	227.450	.700	.060	15.000	1.405	19.000	Mean
0	1.843	.000	.000	.000	.006	.000	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2	
1.50E-05	0.0006	.014	.190	28.986	438,641	905,368	
Performance factor a	djusted for fuel density:	fuel density: 905,368 **% Change PF =		12.58 9			

Company Name:	Laidlaw	Location:	Green Bay, WI		Date:	3/27/96	
Test Portion:	Baseline	Stack Diam.	4	Inches			
Equipment Type:	School Bus	ID #:	1935		Baro	30.54	
Fuel Sp. Gravity(SG	.865	Temp:					
					Time:	1:20pm	
RPM	Exh Temp	By Inch	CO	HC	02	02	
1800	210.4	0.52	0.04	19	1.65	18.7	
1800	211.6	0.52	0.04	19	1.65	18.6	
1800	212.8	0.52	0.04	19	1.05	18.4	
1800	213.2	0.52	0.04	19	1.66	18.6	
1800.000	212.200	.520	.040	19.000	1.654	18.580	Mean
0	1.183	.000	.000	.000	.005	.110	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1	
Company Name:	Laidlaw	Location:	Green Bay, WI		Test Date:	5/23/96	
Test Portion:	Treated	Stack Diam:	4	Inches			
Engine Type:	DTA 360 Intn'l	Mile/Hrs:	38924				
Equipment Type	School Bus	ID #:	1935		Baro:	29.93	
Fuel Sp. Gravity: SG Corr Factor:	.860 1.006	Temp:	53		Time:	10:00am	
RPM	Exh Temp	Ryamen	CO		602	02	
1800	233.6	0.52	0.03	15	1.51	18.9	
1800	234.4	0.52	0.03	15	1.51	18.9	
1800	235.2	0.52	0.03	15	1.51	18.9	
1000		0.02	0105		1.01	10.7	
						· ·	
1800.000	234 850	520	030	15 000	1 510	18 000	Mean
0	1.112	.000	.000	.000	.000	.000	Std Dev
					100000		
VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2	
1.50E-05	0.0003	.015	.189	28.998	417,595	1,005,412	
				1 × × 01 01			11 /0
Performance factor ad	justed for fuel density:		1,011,223	1**% Cl	lange PF	-	11.42

... ... jue. consumption.

a	X . 11		0 0 0		-		
Company Name:	Laidlaw	Location	Green Bay, WI		Date:	3/27/96	
Test Portion:	Baseline	Stack Diam.	4	Inches			
Engine Type:	8.2 Detroit	Mile/Hrs	4541				
Equipment Type:	School Bus	ID #:	3782		Baro	30.52	
Eval Sa Camiba (SC	965	Tamp					
ruei sp. Gruvuy(SG	.805	1 emp.			Time:	11:18	
RPM	Exh Temp	Pavelinch	CO	HC	CO2	02	
1800	179.2	1	0.08	22	1.23	19.2	2
1800	180.4	1	0.08	20	1.24	19.3	5
1800	180	1	0.08	24	1.22	19.3	6
-							
						(
1800.000	179.867	1.000	.080	22.000	1.230	19.267	Mean
0	.611	.000	.000	2.000	.010	.058	Std Dev
VEUC	VECO	VECO2	VEO2	Merry 1	nf1	DE1	
VFHC	VFCO	VFCO2	VFUZ	IVILWI	pri	PFI	
						,	
Company Name:	Laidlaw	Location:	Green Bay, WI		Test Date:	5/23/96	
Test Portion:	Treated	Stack Diam:	4	Inches			
Engine Type:	8.2 Detroit	Mile/Hrs:	106619				
Equipment Type	School Bus	ID #:	3782		Baro:	29.93	
Fuel Sp. Gravity:	.865	Temp:	53				
SG Corr Factor:	1.000				Time:	9:20	
RPM	Exh Temp	Py Inch	CO	HC	C02	02	
1800	199.6	1	0.05	22	1.12	19.5	
1800	203.4	1	0.05	21	1.12	19.5	
1800	205.2	1	0.05	22	1.14	19.5	
1800	206.6	1	0.05	22	1.12	19.6	
	+						
							1
1800.000	203.700	1.000	.050	21.750	1.125	19.525	Mean
0	3.031	.000	.000	.500	.010	.050	Std Dev
VEHO	VECO	VECOS	VEOS	N/4		DES	
VFHC	VICO	vrcO2	VFU2	WILW2	p12	PFZ	
2.18E-05	0.0005	.011	.195	28.962	543,597	922,375	
Parformance forter	liusted for fuel density		022 375	**% (1	1ango DE	` _	12 30
refformance factor ac	ijusted for fuel density:		922,313	10 01	lange FF	_	14.30

Company Name:	Laidlaw	Location	Green Bay, WI		Date:	3/27/96	
Test Portion:	Baseline	Stack Diam.	4	Inches			
Engine Type: Equipment Type:	School Bus	ID #:	54154		Baro	30.52	
Fuel Sp. Gravity(SG	.865	Temp:			Time:	10:37am	
					10000	10.57411	
RPM	Exh Temp	Py Inch.	CO	HC	C(02	02	
1800	172.4	0.7	0.04	15	2.04	18.4	
1800	172.4	0.7	0.05	15	2.03	18.4	
1800	171.6	0.7	0.04	15	2.03	18.3	
1800	171.6	0.7	0.04	15	2.03	18.3	
1800.000	172.040	.700	.042	15.000	2.030	18.360	Mean
0	.410	.000	.004	.000	.007	.055	Std Dev
VFHC 1.50E-05	VFCO 0.00042	VFCO2 .020	VFO2 .184	Mtw1 29.060	pf1 311,530	PF1 622,597	
Company Name: Test Portion:	Laidlaw Treated	Location: Stack Diam:	Green Bay, WI 4	Inches	Test Date:	5/23/96	
Engine Type:	7.3 Intern'l	Mile/Hrs:	57127				
Equipment Type	School Bus	ID #:	584		Baro:	29.93	
Fuel Sp. Gravity: SG Corr Factor:	.865 1.000	Temp:	53		Time:	9:30	
RPM	Exh Temp	alizza interes	C(0)	HC	6.02	(92)	
1800	195.6	0.7	0.04	15	1.72	18.9	
1800	196.6	0.7	0.04	15	1.73	18.9	
1800	198.4	0.7	0.04	17	1.71	18.9	
1000		0.1	0.01			1012	
						V	
						-	
1800.000	197 450	700	040	16,000	1,723	18,900	Mean
0	1.644	.000	.000	1.155	.010	.000	Std Dev
VFHC 1.60E-05	VFCO 0.0004	VFCO2 .017	VFO2 .189	Mtw2 29.033	pf2 365,460	PF2 737,678	
			i	(<u></u>			
Performance factor ac	ljusted for fuel density:		737,678	**% Cl	nange PF	=	18.48

L

%

APPENDIX 2

<u>Bus No.</u>	Baseline PF	Treated PF	<u>% Diff</u>
1299	691,085	786,035	+13.74
1358	804,220	905,368	+12.58
1249	1,297,999	1,380,141	+ 6.33
586	891,488	968,716	+ 8.66
43	610,679	679,283	+11.23
1935	907,580	1,005,412	+11.42
3782	821,375	922,375	+12.30
Fleet Averages:			+10.89

Table 1. Comparison of Fuel Consumption Mass Flow Rate (PFs)

Note: An increase in PF equals a reduction in fuel consumption since the PF is a measure of the length of time required to consumed the same amount of fuel. The more efficient the engine, the longer it takes to consume the same amount of fuel, so the PF is higher.

<u>Bus No.</u>	Baseline CO	Treated CO	<u>% Diff</u>
		0.051	
1299	0.060	0.054	-10.00
1358	0.080	0.060	-25.00
3782	0.080	0.050	-38.00
1935	0.040	0.030	-25.00
43	0.050	0.040	-20.00
586	0.030	0.030	0.00
1249	0.070	0.040	-43.00
Fleet Averages:	0.059	0.043	-27.10
1935 43 586 1249 Fleet Averages:	0.040 0.050 0.030 0.070	0.030 0.040 0.030 0.040 0.043	-25.00 -20.00 0.00 -43.00

5

Table 2. Comparison of Carbon Monoxide Emissions

Bus No.	Baseline Smoke #	Treated Smoke #	<u>% Diff</u>
1935	5.5	3.0	-45.00
43	5.0	3.0	-40.00
586	5.0	3.0	-40.00
1299	4.0	2.0	-50.00
1358	3.0	1.5	-50.00
3782	7.0	4.0	-43.00
1249	6.0	3.0	-50.00
Fleet Averages:	5.10	2.80	-45.10

Table 3. Comparison of Smoke Emissions

·**

¥

APPENDIX 3

Figure 1 CARBON MASS BALANCE FORMULAE

ASSUMPTIONS: $C_{12}H_{26}$ and SG = 0.82 Time is constant Load is constant DATA: Mwt = Molecular Weight pf1 = Calculated Performance Factor (Baseline) = Calculated Performance Factor (Treated) pf2 PF1 = Performance Factor (adjusted for Baseline exhaust mass) PF2 = Performance Factor (adjusted for Treated exhaust mass) CFM = Volumetric Flow Rate of the Exhaust SG = Specific Gravity of the Fuel VF = Volume Fraction d = Exhaust stack diameter in inches = Velocity pressure in inches of H_20 Pv = Barometric pressure in inches of mercury PB = Exhaust temperature ${}^{o}F$ Te VFHC = "reading" \div 1,000,000 VFCO = "reading" \div 100 VFCO₂ = "reading" \div 100 = "reading" \div 100 VFO₂ **EOUATIONS:**

Mwt =

 $(VFHC)(86) + (VFCO)(28) + (VFCO_2)(44) + (VFO_2)(32) + [(1-VFHC-VFCO-VFCO_2-VFO_2)(28)]$

pf1 or pf2 =

CFM =

<u>3099.6 x Mwt</u> 86(VFHC)+13.89(VFCO)+13.89(VFCO₂)

$$\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{Pv}{1.325(PB|ET+460)}} \right)$$

PF1 or PF2 =

FUEL ECONOMY: PERCENT INCREASE (OR DECREASE)

<u>PF2 - PF1</u> x 100 PF1

Figure 2.

SAMPLE CALCULATION FOR THE CARBON MASS BALANCE

BASELINE:

Equation 1 (Volume Fractions)

VFHC	$= 13.20/1,000,000 \\= 0.0000132$
VFCO	= 0.017/100 = 0.00017
VFCO ₂	= 1.937/100 = 0.01937
VFO ₂	= 17.10/100 = 0.171

Equation 2 (Molecular Weight)

Mwt1	= (0.0000132)(86) + (0.00017)(28) + (0.01937)(44) + (0.171)(32)
	+[(1-0.0000132-0.00017-0.01937-0.171)(28)]

Mwt1 =28.995

Equation 3 (Calculated Performance Factor)

pf1 = $\frac{3099.6 \times 28.995}{86(0.000132) + 13.89(0.00017) + 13.89(0.01937)}$

pf1 = 329,809

Equation 4 (CFM Calculations)

CFM =
$$\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{P_V}{1.325(PB/ET+460)}} \right)$$

d = Exhaust stack diameter in inches Pv = Velocity pressure in inches of H_20 P_B = Barometric pressure in inches of mercury

Te = Exhaust temperature $^{\circ}F$

CFM =
$$\frac{(10/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{.80}{1.325(30.00/313.100+460)}} \right)$$

Equation 5 (Corrected Performance Factor)

- PF1 = 329.809(313.1 deg F + 460)2358.37 CFM
- PF1 = 108,115

TREATED:

Equation 1 (Volume Fractions)

VFHC	$= 14.6/1,000,000 \\= 0.0000146$
VFCO	= .013/100 = 0.00013
VFCO ₂	= 1.826/100 = 0.01826
VFO ₂	= 17.17/100 = 0.1717

Equation 2 (Molecular Weight)

Mwt2 = (0.0000146)(86) + (0.00013)(28) + (0.01826)(44) + (0.1717)(32)+ [(1-0.0000146-0.00013-0.01826-0.1717)(28)]

Mwt2 = 28.980

Equation 3 (Calculated Performance Factor)

- pf2 = 3099.6×28.980 86(0.0000146)+13.89(0.00013)+13.89(0.01826)
- pf2 = 349,927

Equation 4 (CFM Calculations)

CFM =
$$\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{P_V}{1.325(PB|ET+460)}} \right)$$

d =Exhaust stack diameter in inches

$$Pv$$
 =Velocity pressure in inches of H₂0
 P_B =Barometric pressure in inches of mercury

 P_B = Barometric pressure in inches Te = Exhaust temperature ^oF

CFM =
$$\frac{(10/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{.775}{1.325(29.86/309.02+460)}} \right)$$

CFM = 2320.51

. . .

Equation 5 (Corrected Performance Factor)

PF2 =
$$349.927(309.02 \text{ deg F} + 460)$$

2320.51 CFM

= 115,966

Fuel Specific Gravity Correction Factor

Baseline Fuel Specific Gravity - Treated Fuel Specific Gravity/Baseline Fuel Specific Gravity +1

.840-.837/.840+1=1.0036 PF2 = 115,966 x Specific Gravity Correction PF2 = 115,966 x 1.0036 PF2 = 116,384

Equation 6 (Percent Change in Engine Performance Factor:)

% Change PF = $\frac{PF2 - PF1}{PF1} \times 100$

% Change PF = [(116,384 - 108,115)/108,115](100)

= +7.65